twoe (2e): an R package for modelling tropical forest dynamics from permanent sample plot data

Ghislain Vieilledent¹,², Frédéric Mortier¹ and Sylvie Gourlet-Fleury¹

¹ Cirad UR105 Biens et Services des Ecosystèmes Forestiers
² Cirad-Madagascar DP Forêts et Biodiversité
<table>
<thead>
<tr>
<th>1 Introduction</th>
<th>3 Example on MBaiki</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Forest dynamics and PSP</td>
<td>- R code</td>
</tr>
<tr>
<td>- Difficulty of analysis</td>
<td>- Tables</td>
</tr>
<tr>
<td>- Objectives</td>
<td>- Graphics</td>
</tr>
<tr>
<td>2 Package description</td>
<td></td>
</tr>
<tr>
<td>- Formatting the data</td>
<td></td>
</tr>
<tr>
<td>- Growth process</td>
<td></td>
</tr>
<tr>
<td>- Mortality process</td>
<td></td>
</tr>
<tr>
<td>- Recruitment process</td>
<td></td>
</tr>
<tr>
<td>4 Discussion</td>
<td></td>
</tr>
<tr>
<td>- Originality</td>
<td></td>
</tr>
<tr>
<td>- Species treatment</td>
<td></td>
</tr>
<tr>
<td>- Applications</td>
<td></td>
</tr>
<tr>
<td>- twoe web-site</td>
<td></td>
</tr>
</tbody>
</table>
Studying forest dynamics

What?

- **Ecological knowledge**: Mechanisms determining forest dynamics (e.g. competition for resources, species vulnerability to climate change)

- **Forecasting and forest management**: Thinning strategies and conservation of forest ecosystem services

How?

- **Observing the forest**: In space and time ⇒ PSP

Paracou tropical forest

Capsis platform
Permanent sample plots

Measurements

- **Demographic processes**: Growth, Mortality, Recruitment
- **At the tree level**: species, DBH, position (X,Y)
- **Repeated on the long term**: eg. each year for 10 years

IGBP forest types

MBaiki PSP, Central African Republic
Raw data

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Plot"</td>
<td>"Tree"</td>
<td>"X"</td>
<td>"Y"</td>
<td>"Species"</td>
<td>"D1995.03.15"</td>
<td>"D1996.03.01"</td>
<td>"D1998.02.15"</td>
<td>"D2000.03.15"</td>
<td>"D2002.08.31"</td>
<td>"D2003.06.01"</td>
<td>"D2004.07.31"</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>"P11"</td>
<td>"P11T309"</td>
<td>58</td>
<td>147</td>
<td>"Sp306"</td>
<td>32.5</td>
<td>34.7</td>
<td>36.3</td>
<td>37.6</td>
<td>39.2</td>
<td>40.6</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>"P11"</td>
<td>"P11T310"</td>
<td>57</td>
<td>150</td>
<td>"Sp22"</td>
<td>20.8</td>
<td>20.8</td>
<td>21.2</td>
<td>20.8</td>
<td>21.5</td>
<td>21.6</td>
<td>22.6</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>"P11"</td>
<td>"P11T311"</td>
<td>55</td>
<td>150</td>
<td>"Sp218"</td>
<td>16.6</td>
<td>16.7</td>
<td>16.7</td>
<td>16.6</td>
<td>16.7</td>
<td>16.7</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>"P11"</td>
<td>"P11T312"</td>
<td>58</td>
<td>154</td>
<td>"Sp19"</td>
<td>17.7</td>
<td>18.3</td>
<td>18.3</td>
<td>18.3</td>
<td>18.3</td>
<td>18.3</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>"P11"</td>
<td>"P11T313"</td>
<td>58</td>
<td>154</td>
<td>"Sp216"</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.3</td>
<td>11.3</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>"P11"</td>
<td>"P11T316"</td>
<td>56</td>
<td>164</td>
<td>"Sp325"</td>
<td>33.9</td>
<td>34.2</td>
<td>34.1</td>
<td>34.1</td>
<td>34.2</td>
<td>34.2</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>"P11"</td>
<td>"P11T317"</td>
<td>55</td>
<td>169</td>
<td>"Sp559"</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
<td>19.9</td>
<td>19.9</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>"P11"</td>
<td>"P11T319"</td>
<td>53</td>
<td>167</td>
<td>"Sp266"</td>
<td>14</td>
<td>14.3</td>
<td>15</td>
<td>14.6</td>
<td>14.6</td>
<td>14.8</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>"P11"</td>
<td>"P11T320"</td>
<td>54</td>
<td>165</td>
<td>"Sp22"</td>
<td>11.1</td>
<td>11.3</td>
<td>11.9</td>
<td>11.8</td>
<td>12.1</td>
<td>12.3</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>"P11"</td>
<td>"P11T321"</td>
<td>57</td>
<td>172</td>
<td>"Sp265"</td>
<td>22.4</td>
<td>22.4</td>
<td>22.4</td>
<td>22.1</td>
<td>22.4</td>
<td>22.4</td>
<td>23.6</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>"P11"</td>
<td>"P11T322"</td>
<td>54</td>
<td>175</td>
<td>"Sp713"</td>
<td>18.8</td>
<td>18.9</td>
<td>18.8</td>
<td>18.8</td>
<td>19.3</td>
<td>19.4</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>"P11"</td>
<td>"P11T323"</td>
<td>53</td>
<td>173</td>
<td>"Sp222"</td>
<td>11.1</td>
<td>11.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>"P11"</td>
<td>"P11T324"</td>
<td>51</td>
<td>172</td>
<td>"Sp109"</td>
<td>32.5</td>
<td>32.8</td>
<td>33.7</td>
<td>33.7</td>
<td>34.4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>"P11"</td>
<td>"P11T325"</td>
<td>51</td>
<td>170</td>
<td>"Sp243"</td>
<td>28.2</td>
<td>28.6</td>
<td>29</td>
<td>28.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>"P11"</td>
<td>"P11T327"</td>
<td>54</td>
<td>162</td>
<td>"Sp256"</td>
<td>33.4</td>
<td>33.6</td>
<td>33.7</td>
<td>33.7</td>
<td>34.1</td>
<td>34.1</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>"P11"</td>
<td>"P11T328"</td>
<td>54</td>
<td>159</td>
<td>"Sp9"</td>
<td>38.2</td>
<td>39.2</td>
<td>41.4</td>
<td>42.2</td>
<td>44.6</td>
<td>44.7</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>"P11"</td>
<td>"P11T329"</td>
<td>54</td>
<td>161</td>
<td>"Sp559"</td>
<td>22</td>
<td>22.6</td>
<td>23.6</td>
<td>23.6</td>
<td>23.9</td>
<td>23.9</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>"P11"</td>
<td>"P11T330"</td>
<td>54</td>
<td>162</td>
<td>"Sp259"</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.3</td>
<td>11.5</td>
<td>11.6</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>"P11"</td>
<td>"P11T331"</td>
<td>51</td>
<td>182</td>
<td>"Sp16"</td>
<td>82.4</td>
<td>84.7</td>
<td>87.2</td>
<td>87.2</td>
<td>89.8</td>
<td>90.4</td>
<td>93.9</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>"P11"</td>
<td>"P11T332"</td>
<td>52</td>
<td>182</td>
<td>"Sp306"</td>
<td>26.6</td>
<td>27.5</td>
<td>26.7</td>
<td>27.9</td>
<td>28</td>
<td>28</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>"P11"</td>
<td>"P11T332"</td>
<td>53</td>
<td>181</td>
<td>"Sp14"</td>
<td>28.6</td>
<td>29.8</td>
<td>31.7</td>
<td>32.8</td>
<td>35.2</td>
<td>36.9</td>
<td>40.1</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>"P11"</td>
<td>"P11T334"</td>
<td>56</td>
<td>180</td>
<td>"Sp713"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>"P11"</td>
<td>"P11T355"</td>
<td>55</td>
<td>183</td>
<td>"Sp22"</td>
<td>10.5</td>
<td>10.7</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>"P11"</td>
<td>"P11T336"</td>
<td>58</td>
<td>182</td>
<td>"Sp300"</td>
<td>29.1</td>
<td>29.3</td>
<td>29.3</td>
<td>29.3</td>
<td>29.1</td>
<td>29.4</td>
<td>30.6</td>
<td></td>
</tr>
</tbody>
</table>

Extract of MBaiki data-base

twoe R package
1 Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

2 Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

3 Example on MBaiki
- R code
- Tables
- Graphics

4 Discussion
- Originality
- Species treatment
- Applications
- twoe web-site
Difficulties arising from PSP data analysis

Huge amount of data
- MBaiki: 38514 trees, 24 censuses (1982–2009), 924336 measurements!

Imperfect data
- Observation error: negative growth
- Variable time interval
- Several plots
- Missing values
- Growth: Gaussian process, Mortality: Bernoulli process, Recruitment: Poisson process

Unbalanced data
- Many rare species with few individuals
- MBaiki: out of 234 species, only 99 species ≥ 50 individuals (on 40 ha!)

Difficulties
- PSP: complicated data-sets
- Require advanced statistical models

twое R package
1 Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

2 Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

3 Example on MBAiki
- R code
- Tables
- Graphics

4 Discussion
- Originality
- Species treatment
- Applications
twoe web-site

twoe R package
Objectives of the twoe (2e) R package

- For all the species: modelling growth, mortality and recruitment
- Making the most of the available data (remeasurements)
- Overcoming several difficulties associated to PSP data
- Easy-to-use functions which only require a minimal knowledge of the R software
Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

Example on MBAiki
- R code
- Tables
- Graphics

Discussion
- Originality
- Species treatment
- Applications
twoe web-site
entry_data()

- Transform the raw data into right-format data-sets
- 4 arguments: Data, XY.Plot, R.Comp, L.Cell
- Return 3 data-sets for demographic models: data_growth.txt, data_mortality.txt, data_recruitment.txt

```
<table>
<thead>
<tr>
<th>Plot</th>
<th>Tree</th>
<th>X</th>
<th>Y</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>PI1T09</td>
<td>58</td>
<td>147</td>
<td>Sp306</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T10</td>
<td>57</td>
<td>150</td>
<td>Sp22</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T11</td>
<td>55</td>
<td>150</td>
<td>Sp218</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T12</td>
<td>58</td>
<td>154</td>
<td>Sp19</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T13</td>
<td>58</td>
<td>154</td>
<td>Sp216</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T16</td>
<td>56</td>
<td>164</td>
<td>Sp325</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T17</td>
<td>55</td>
<td>169</td>
<td>Sp559</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T319</td>
<td>53</td>
<td>167</td>
<td>Sp266</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T32</td>
<td>54</td>
<td>165</td>
<td>Sp22</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T32</td>
<td>57</td>
<td>172</td>
<td>Sp265</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T32</td>
<td>54</td>
<td>175</td>
<td>Sp713</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T32</td>
<td>53</td>
<td>173</td>
<td>Sp222</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T34</td>
<td>51</td>
<td>172</td>
<td>Sp109</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T35</td>
<td>51</td>
<td>170</td>
<td>Sp243</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T37</td>
<td>54</td>
<td>162</td>
<td>Sp266</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T38</td>
<td>54</td>
<td>159</td>
<td>Sp9</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T39</td>
<td>54</td>
<td>161</td>
<td>Sp559</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T30</td>
<td>54</td>
<td>162</td>
<td>Sp259</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T31</td>
<td>51</td>
<td>162</td>
<td>Sp16</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T32</td>
<td>52</td>
<td>181</td>
<td>Sp306</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T33</td>
<td>54</td>
<td>181</td>
<td>Sp14</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T34</td>
<td>56</td>
<td>180</td>
<td>Sp713</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T35</td>
<td>55</td>
<td>183</td>
<td>Sp22</td>
</tr>
<tr>
<td>P11</td>
<td>PI1T36</td>
<td>58</td>
<td>182</td>
<td>Sp300</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>D1995.03.15</th>
<th>D1996.03.01</th>
<th>D1998.02.15</th>
<th>D2000.03.15</th>
<th>D2002.03.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>14.3</td>
<td>15</td>
<td>14.6</td>
<td>14.6</td>
</tr>
<tr>
<td>11.1</td>
<td>11.0</td>
<td>11.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>
```

twooe R package
1. Introduction
 - Forest dynamics and PSP
 - Difficulty of analysis
 - Objectives

2. Package description
 - Formatting the data
 - Growth process
 - Mortality process
 - Recruitment process

3. Example on MBaiki
 - R code
 - Tables
 - Graphics

4. Discussion
 - Originality
 - Species treatment
 - Applications
 - twoe web-site
Growth process: \texttt{entry_ngrowth_gibbs()}

Hierarchical Bayesian framework

\textbf{Error process}

\[G_{ik}^{\text{obs}} \sim \text{Normal}(G_{ik}^{\text{true}}, V_{i}^{\text{err}}) \]
\[V_{i}^{\text{err}} = (0.927 + 0.0038D_{i})^2 \]

\textbf{Growth process}

\[\log(G_{ik}^{\text{true}}) \sim \text{Normal}((\beta_{0} + b_{0,k}) + (\beta_{1} + b_{1,k}) \log(D_{i}) + (\beta_{2} + b_{2,k}) \log(C_{i} + 1), V) \]

\textbf{Priors}

\[[\beta_{0}, \beta_{1}, \beta_{2}] \sim \text{Normal}_3(\mu_{\beta}, V_{\beta}) \]
\[[b_{0,k}, b_{1,k}, b_{2,k}] \sim \text{Normal}_3(0, V_{b}) \]
\[V_{b} \sim \text{Inverse-Wishart}(r, rR) \]
\[V \sim \text{Inverse-Gamma}(\nu, \delta) \]

\(G_{ik} \) is the growth (mm.yr\(^{-1}\)) of tree \(i \) of species \(k \) between census \(c \) and \(c + 1 \)
\(D_{i} \) is the diameter (cm) of tree \(i \) at census \(c \)
\(C_{i} \) is the competition index (m\(^2\).ha\(^{-1}\)) in the neighborhood of tree \(i \) at census \(c \)
\(b_{0,k}, b_{1,k}, b_{2,k} \) are the species random effects
Growth process: `entry_ngrowth_gibbs()`

R function

```
entry_ngrowth_gibbs()
```

- Such hierarchical model cannot be fitted with classical tools (`nlme()`, `lme4` in R)
- `twoe` R package includes an easy-to-use function to fit the model
- Model can include various covariate types: climatic covariates at the plot level, species functional trait, etc.

```
entry_ngrowth_gibbs(fixed, random, group, diameter, data, burnin=1000, mcmc=10000, thin=10, verbose=1, seed=NA, beta.start=NA, sigma2.start=NA, Vb.start=NA, mubeta=0, Vbeta=1.0E6, r, R, nu=0.001, delta=0.001, ...)
```
Algorithms

- **Gibbs sampler** to obtain Markov Chain Monte Carlo for each parameter
- **adaptive Metropolis-Hastings** algorithm for latent variables (acceptance rate \(~44\%\))
- **Chib and Carlin block-sampling** for random effects \(\rightarrow\) convergence
- **Woodbury matrix identity** for large matrix computation
- **C++** code with the **Scythe** statistical library \(\rightarrow\) speed
1 Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

2 Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

3 Example on MBaiki
- R code
- Tables
- Graphics

4 Discussion
- Originality
- Species treatment
- Applications
twoe web-site
Mortality process: entry_mortality_gibbs()

Hierarchical Bayesian framework

Mortality process
\[S_{ik} \sim \text{Bernoulli}(\theta'_{ik}) \]
\[\theta'_{ik} = 1 - (1 - \theta_{ik})^{Y_i} \]
\[\text{logit}(\theta_{ik}) = (\beta_0 + b_{0,k}) + (\beta_1 + b_{1,k})(D_i - 20) + (\beta_2 + b_{2,k})(C_i - 20) + \epsilon_i \]

Priors
\[\epsilon_i \sim \text{Normal}(0, V = 1) \]
\[[\beta_0, \beta_1, \beta_2] \sim \text{Normal}_3(\mu_\beta, V_\beta) \]
\[[b_{0,k}, b_{1,k}, b_{2,k}] \sim \text{Normal}_3(0, V_b) \]
\[V_b \sim \text{Inverse-Wishart}(r, rR) \]

\(S_{ik} \) is the status (0=alive, 1=dead) of tree \(i \) of species \(k \) between census \(c \) and \(c + 1 \)
\(Y_i \) is the time interval (yr) between census \(c \) and \(c + 1 \)
\(\theta'_{ik} \) is the mortality rate for time interval \(Y_i \)
\(\theta_{ik} \) is the annual mortality rate
\(D_i \) is the diameter (cm) of tree \(i \) at census \(c \)
\(C_i \) is the competition index \((m^2.ha^{-1}) \) in the neighborhood of tree \(i \) at census \(c \)
\(b_{0,k}, b_{1,k}, b_{2,k} \) are the species random effects

twoe R package
Mortality process: `entry_mortality_gibbs()`

R function

```
entry_mortality_gibbs(fixed, random, group, interval=1, data,
burnin=5000, mcmc=10000, thin=10, verbose=1, seed=NA, beta.start=NA,
sigma2.start=NA, Vb.start=NA, mubeta=0, Vbeta=1.0E6, r, R, nu=0.001,
delta=0.001, FixOD=0, ...)  
```
Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

Example on MBaiki
- R code
- Tables
- Graphics

Discussion
- Originality
- Species treatment
- Applications
- twoe web-site
Recruitment process: \texttt{entry_recruitment_gibbs()}

Hierarchical Bayesian framework

Recruitment process

\[
R_{jk} \sim \text{Poisson}(\lambda'_{jk})
\]

\[
\lambda'_{jk} = \lambda_{jk} Y_j A_j
\]

\[
\log(\lambda_{jk}) = (\beta_0 + b_{0,k}) + (\beta_1 + b_{1,k})(BA_{jk} - 0.5) + (\beta_2 + b_{2,k})(C_j - 20) + \epsilon_j
\]

Priors

\[
\epsilon_j \sim \text{Normal}(0, V = 1)
\]

\[
[\beta_0, \beta_1, \beta_2] \sim \text{Normal}_3(\mu_\beta, V_\beta)
\]

\[
[b_{0,k}, b_{1,k}, b_{2,k}] \sim \text{Normal}_3(0, V_b)
\]

\[
V_b \sim \text{Inverse-Wishart}(r, rR)
\]

\(R_{jk}\) is the number of recruits of quadrat \(j\) for species \(k\) between census \(c\) and \(c + 1\)

\(Y_j\) is the time interval (yr) between census \(c\) and \(c + 1\)

\(A_j\) is the area (m\(^2\)) of quadrat \(j\)

\(\lambda'_{jk}\) is the mean number of recruits for time interval \(Y_j\) and area \(A_j\)

\(\lambda_{jk}\) is the mean number of recruits (.yr\(^{-1}\).m\(^{-2}\))

\(BA_{jk}\) is the basal area of conspecific trees (m\(^2\).ha\(^{-1}\)) for sp. \(k\) in the quadrat \(j\) at census \(c\)

\(C_j\) is the competition index (m\(^2\).ha\(^{-1}\)) in the quadrat \(j\) at census \(c\)

\(b_{0,k}, b_{1,k}, b_{2,k}\) are the species random effects
Recruitment process: `entry_recruitment_gibbs()`

R function

`entry_recruitment_gibbs()`

- GLM with unclassical link function (variable time interval Y_i and quadrat area A_j)
- Such hierarchical model cannot be fitted with classical tools (`glm()`, `lme4` in R)
- `twoe` R package includes an easy-to-use function to fit the model
- Model can include various covariate types: climatic covariates at the plot level, species functional trait, etc.
- Model allows integrating overdispersion in the data (common)

`entry_recruitment_gibbs(fixed, random, group, interval=1, area=1, data, burnin=5000, mcmc=10000, thin=10, verbose=1, seed=NA, beta.start=NA, sigma2.start=NA, Vb.start=NA, mubeta=0, Vbeta=1.0E6, r, R, nu=0.001, delta=0.001, FixOD=0, ...)`

`twoe` R package
1 Introduction
 - Forest dynamics and PSP
 - Difficulty of analysis
 - Objectives

2 Package description
 - Formatting the data
 - Growth process
 - Mortality process
 - Recruitment process

3 Example on MBaiki
 - R code
 - Tables
 - Graphics

4 Discussion
 - Originality
 - Species treatment
 - Applications
 - twoe web-site
Example on MBaiki

R code

- MBaiki: 38514 trees, 24 censuses, 234 species
- ~15 lines of R code
- entry_growth, entry_mortality, entry_recruitment

```
library(twoe)
# Creating data-sets
# Importing permanent-plot data-set
Data <- read.table(file="TreeFile", sep="\t", header=TRUE)
XY.Plot <- read.table(file="PlotFile", sep="\t", header=TRUE)
# Creating the entry data-set
entry_data(Data, XY.Plot, R_COMP=15, L_Cell=20)

# Growth
# Importing growth data
data_growth <- read.table(file="data_growth.txt", header=TRUE, sep="\t")
# Calling entry_growth
ten_growth(data_growth, burnin=1000, mcmc=1000, thin=1, quantiles=5)

# Mortality
# Importing mortality data
data_mortality <- read.table(file="data_mortality.txt", header=TRUE, sep="\t")
# Calling entry_mortality
ten_mortality(data_mortality, burnin=1000, mcmc=1000, thin=1, quantiles=5)

# Recruitment
# Importing recruitment data
data_recruitment <- read.table(file="data_recruitment.txt", header=TRUE, sep="\t")
# Calling entry_recruitment
ten_recruitment(data_recruitment, burnin=1000, mcmc=1000, thin=1, quantiles=5)

# Simulations
# Calling exit_simu
exit_simu(Data, XY.Plot, R.Recruitment=10, R.Comp=15, L.Cell=20, Plot.Sim="ALL", Year.Sim=10, Step.Sim=1)
```

Outputs

- Tables: MCMC, parameter values and significance
- Graphics: MCMC, posterior distributions, model predictions by species, forest dynamics

twoe R package
1 **Introduction**
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

2 **Package description**
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

3 **Example on MBaiki**
- R code
- Tables
- Graphics

4 **Discussion**
- Originality
- Species treatment
- Applications
- twoe web-site

twoe R package
MCMC samples

<table>
<thead>
<tr>
<th>"beta0"</th>
<th>"beta1"</th>
<th>"beta2"</th>
<th>"b0.1"</th>
<th>"b0.2"</th>
<th>"b0.3"</th>
<th>"b0.4"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2191191221</td>
<td>0.4537011149</td>
<td>-0.3168129063</td>
<td>0.2980748277</td>
<td>0.7534533998</td>
<td>1.6390262455</td>
<td>0.0423968119</td>
</tr>
<tr>
<td>1.2669422861</td>
<td>0.4110006588</td>
<td>-0.3084932066</td>
<td>1.0927496444</td>
<td>-0.9904460228</td>
<td>0.7954071744</td>
<td>-0.0350396276</td>
</tr>
<tr>
<td>1.3427598323</td>
<td>0.3779009963</td>
<td>-0.3033811896</td>
<td>1.3465497322</td>
<td>-1.9109630431</td>
<td>0.9510449316</td>
<td>1.6057855011</td>
</tr>
<tr>
<td>1.3823961113</td>
<td>0.3509933059</td>
<td>-0.2881771871</td>
<td>1.3376130363</td>
<td>-1.7377752797</td>
<td>1.4581410641</td>
<td>-1.0878348323</td>
</tr>
<tr>
<td>1.3313716461</td>
<td>0.4076387879</td>
<td>-0.3280547952</td>
<td>0.2644777488</td>
<td>1.805831209</td>
<td>-1.2954239388</td>
<td>-0.1509235201</td>
</tr>
<tr>
<td>1.1545125794</td>
<td>0.3793988333</td>
<td>-0.2571446634</td>
<td>3.0953141928</td>
<td>-1.330254192</td>
<td>-0.9507031729</td>
<td>-0.9454601513</td>
</tr>
<tr>
<td>1.3103043835</td>
<td>0.3876641969</td>
<td>-0.2933252734</td>
<td>1.3856273122</td>
<td>-3.7746210088</td>
<td>0.6769490756</td>
<td>1.7636419181</td>
</tr>
<tr>
<td>1.2333726022</td>
<td>0.4377026769</td>
<td>-0.3202759341</td>
<td>0.7082752629</td>
<td>-2.9428044067</td>
<td>-1.0501970924</td>
<td>0.1652068849</td>
</tr>
<tr>
<td>1.4032780569</td>
<td>0.3626589103</td>
<td>-0.3066747245</td>
<td>0.1803529613</td>
<td>-0.0224885022</td>
<td>-1.4262330423</td>
<td>1.0862338186</td>
</tr>
<tr>
<td>1.3953278426</td>
<td>0.3319997678</td>
<td>-0.2786962373</td>
<td>2.6770353541</td>
<td>-1.6566917713</td>
<td>1.4527561959</td>
<td>0.5204416829</td>
</tr>
<tr>
<td>1.1173777096</td>
<td>0.4312913692</td>
<td>-0.2848482652</td>
<td>0.8174673566</td>
<td>1.1172276762</td>
<td>-0.7441374217</td>
<td>0.3805324269</td>
</tr>
<tr>
<td>1.4553040002</td>
<td>0.3876745338</td>
<td>-0.3468174329</td>
<td>0.5083211019</td>
<td>0.3156475477</td>
<td>-1.2020621852</td>
<td>0.0766520066</td>
</tr>
<tr>
<td>1.2380254491</td>
<td>0.3912126601</td>
<td>-0.284644809</td>
<td>0.7094806246</td>
<td>-1.1308846906</td>
<td>-1.128812164</td>
<td>-0.554741836</td>
</tr>
<tr>
<td>1.2820507747</td>
<td>0.3489504416</td>
<td>-0.2943949278</td>
<td>0.7424531346</td>
<td>-2.4834645417</td>
<td>-0.7243945778</td>
<td>0.2278214645</td>
</tr>
<tr>
<td>1.0338981008</td>
<td>0.3905739911</td>
<td>-0.2298021892</td>
<td>-0.00848746</td>
<td>0.9666144943</td>
<td>0.4572645207</td>
<td>0.2011752778</td>
</tr>
<tr>
<td>1.1237248541</td>
<td>0.343056865</td>
<td>-0.2825090915</td>
<td>2.658499036</td>
<td>-0.5751569606</td>
<td>-1.0237090296</td>
<td>0.6653778569</td>
</tr>
<tr>
<td>1.2176233622</td>
<td>0.4117686471</td>
<td>-0.2946344643</td>
<td>0.3913152385</td>
<td>0.945738341</td>
<td>-0.5899216217</td>
<td>0.571633442</td>
</tr>
<tr>
<td>1.1693423904</td>
<td>0.423712154</td>
<td>-0.2811416856</td>
<td>1.5443100517</td>
<td>-3.18514003</td>
<td>-0.7909476985</td>
<td>0.0379952014</td>
</tr>
<tr>
<td>1.2750390115</td>
<td>0.3889030888</td>
<td>-0.2947815793</td>
<td>1.1609089679</td>
<td>-4.0566028855</td>
<td>-1.3681793996</td>
<td>1.1382463678</td>
</tr>
<tr>
<td>1.4306927623</td>
<td>0.392642244</td>
<td>-0.342257254</td>
<td>1.7554198666</td>
<td>-1.3990937245</td>
<td>0.4479694049</td>
<td>-1.2108527655</td>
</tr>
<tr>
<td>1.2264984968</td>
<td>0.3694618154</td>
<td>-0.2659607207</td>
<td>2.1514859388</td>
<td>-0.4978968503</td>
<td>-0.6075485433</td>
<td>0.5184120558</td>
</tr>
<tr>
<td>1.3661083337</td>
<td>0.404244477</td>
<td>-0.3275752287</td>
<td>2.4247679186</td>
<td>-0.196880506</td>
<td>-1.3385401346</td>
<td>-1.1315235073</td>
</tr>
<tr>
<td>1.2440061444</td>
<td>0.4301798501</td>
<td>-0.2923263696</td>
<td>0.8163505812</td>
<td>1.33364482</td>
<td>-1.1025544332</td>
<td>-1.1645326253</td>
</tr>
<tr>
<td>1.0016713027</td>
<td>0.449312019</td>
<td>-0.2538259804</td>
<td>1.9986907577</td>
<td>-1.2283171778</td>
<td>-0.9756318044</td>
<td>1.7882041975</td>
</tr>
<tr>
<td>1.2416496634</td>
<td>0.417661241</td>
<td>-0.2530460652</td>
<td>0.3882304122</td>
<td>0.9073560494</td>
<td>-1.3660090653</td>
<td>0.5085780732</td>
</tr>
<tr>
<td>1.0594220841</td>
<td>0.4326334238</td>
<td>-0.2623945661</td>
<td>2.6600718501</td>
<td>-1.0972611333</td>
<td>-0.9785552525</td>
<td>-0.8214365453</td>
</tr>
<tr>
<td>1.0770255335</td>
<td>0.3577367065</td>
<td>-0.214182338</td>
<td>2.0734675534</td>
<td>-1.7764069094</td>
<td>0.5686340538</td>
<td>1.1167540697</td>
</tr>
<tr>
<td>1.0353056359</td>
<td>0.4558631579</td>
<td>-0.2820578489</td>
<td>3.1400897175</td>
<td>-0.3175173362</td>
<td>-1.616874375</td>
<td>-0.5295487673</td>
</tr>
</tbody>
</table>

Can be analysed further with the coda package or R twoe R package
Parameter values and significance

<table>
<thead>
<tr>
<th>"Id"</th>
<th>"Sp"</th>
<th>"alpha0g"</th>
<th>"alpha1g"</th>
<th>"alpha2g"</th>
<th>"s0g"</th>
<th>"s1g"</th>
<th>"s2g"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Spmean</td>
<td>1.4389952262</td>
<td>0.4096504311</td>
<td>-0.2855319717</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Sp1</td>
<td>2.6599234533</td>
<td>0.2801744965</td>
<td>-0.4812037315</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Sp10</td>
<td>0.8911698092</td>
<td>0.3008921524</td>
<td>-0.1181590426</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Sp101</td>
<td>0.4218370068</td>
<td>0.2516158166</td>
<td>0.058631347</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Sp102</td>
<td>1.1381511706</td>
<td>0.5994494167</td>
<td>-0.1987752575</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Sp104</td>
<td>2.3521005339</td>
<td>0.4028798001</td>
<td>-0.4524326791</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Sp105</td>
<td>0.5073785119</td>
<td>0.4413595887</td>
<td>-0.167962706</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Sp106</td>
<td>0.690394052</td>
<td>0.5668308346</td>
<td>-0.2664538598</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Sp108</td>
<td>3.6941418249</td>
<td>0.4391087316</td>
<td>-0.8897195649</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Sp109</td>
<td>0.0956613779</td>
<td>0.7258335987</td>
<td>-0.1295895976</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Sp11</td>
<td>0.3428343133</td>
<td>0.8372735735</td>
<td>-0.2471668616</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Sp111</td>
<td>2.1509138773</td>
<td>0.3045937638</td>
<td>-0.3442273182</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Sp12</td>
<td>-0.3682922931</td>
<td>0.6771067149</td>
<td>0.099187274</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Sp121</td>
<td>2.1087555072</td>
<td>0.3913986902</td>
<td>-0.5192147517</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Sp123</td>
<td>1.7549119364</td>
<td>-0.0573590355</td>
<td>0.1153035769</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Sp124</td>
<td>1.820395578</td>
<td>0.417908157</td>
<td>-0.3886848921</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Sp125</td>
<td>1.1790240715</td>
<td>0.3708760899</td>
<td>-0.2730648596</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Sp126</td>
<td>2.3274944711</td>
<td>0.4155504406</td>
<td>-0.5841205822</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Sp14</td>
<td>1.8376252874</td>
<td>0.2267103343</td>
<td>-0.1953702054</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Sp141</td>
<td>1.463381452</td>
<td>0.3991210179</td>
<td>-0.33472733</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Sp142</td>
<td>2.04290543</td>
<td>0.1080514886</td>
<td>-0.2694565501</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Sp143</td>
<td>0.7557787287</td>
<td>0.1063505185</td>
<td>0.1043045787</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Sp144</td>
<td>1.2682860451</td>
<td>0.3045220805</td>
<td>-0.2569702513</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

Example on MBaiki
- R code
- Tables
- Graphics

Discussion
- Originality
- Species treatment
- Applications
- twoe web-site
MCMC and posterior distributions

Trace of beta0

Density of beta0

Trace of beta1

Density of beta1

Trace of beta2

Density of beta2

N = 1000 Bandwidth = 0.03273

N = 1000 Bandwidth = 0.006606

twoe R package
Model predictions by species

Sp162 = *Musanga cecropioides* R.Br. & Tedlie
Model predictions by species

Sp160

\[D \text{ mean} = 16 \text{ cm} \]

Sp162

\[D \text{ mean} = 29 \text{ cm} \]

Sp165

\[D \text{ mean} = 24 \text{ cm} \]

Sp166

\[D \text{ mean} = 13 \text{ cm} \]

Sp162 = *Musanga cecropioides* R.Br. & Tedlie
Forest dynamics

Plot P22

- Observations
- Predictions

Fast growing species:
- Sp162, Sp109
- Sp17, Sp16, Sp306

R code

twoe R package
Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

Example on MBaiki
- R code
- Tables
- Graphics

Discussion
- Originality
- Species treatment
- Applications
- twoe web-site
Originality compared to existing forest simulators

twoe R package
- Software is focused on **parameter inference**
- **General framework** adapted to tropical forests world-wide
- **Advanced statistical models** are available for non-statisticians

Tropical forest dynamics simulators

<table>
<thead>
<tr>
<th>Simulator</th>
<th>Country</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMIND</td>
<td>Malaysia</td>
<td>Huth</td>
</tr>
<tr>
<td>CAFOGROM</td>
<td>Brazil</td>
<td>Alder</td>
</tr>
<tr>
<td>GMNQR</td>
<td>Australia</td>
<td>Vanclay</td>
</tr>
<tr>
<td>SELVA</td>
<td>Fr. Guiana</td>
<td>Gourlet-F.</td>
</tr>
<tr>
<td>SYMFOR</td>
<td>Indonesia</td>
<td>Phillips</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
1 Introduction
 - Forest dynamics and PSP
 - Difficulty of analysis
 - Objectives

2 Package description
 - Formatting the data
 - Growth process
 - Mortality process
 - Recruitment process

3 Example on MBaiki
 - R code
 - Tables
 - Graphics

4 Discussion
 - Originality
 - Species treatment
 - Applications
 - twoe web-site
Species diversity and functional groups

Twoe R package

- **No a priori** regarding functional groups
- Each species: unique set of demographic parameters
- Demographic models can capture diversity

Tropical forest dynamics simulators

- Species are grouped **a priori** regarding some “key” functional traits
- Tree maximal height, seed size, wood-density, SLA, etc.
- 5 to 22 groups

Introduction
- Forest dynamics and PSP
- Difficulty of analysis
- Objectives

Package description
- Formatting the data
- Growth process
- Mortality process
- Recruitment process

Example on MBaiki
- R code
- Tables
- Graphics

Discussion
- Originality
- Species treatment
- Applications
- twoe web-site
Applications

Ecological knowledge
- Do species have significantly different demographic rates?
- Relationship between demography and species functional traits/phylogeny?
- Species vulnerability to climate change.

Forest management
- Test of sylvicultural scenarios
- Conservation of forest ecosystem services: biodiversity, carbon and wood production
Applications

Do species have significantly different demographic rates?

Hubbell, 2001, neutral theory
Relationship between demography and species functional traits/phylogeny?
Test of sylvicultural scenarios for conservation of ecosystem services.

Capsis platform: http://capsis.cirad.fr
1 Introduction
 ● Forest dynamics and PSP
 ● Difficulty of analysis
 ● Objectives

2 Package description
 ● Formatting the data
 ● Growth process
 ● Mortality process
 ● Recruitment process

3 Example on MBaiki
 ● R code
 ● Tables
 ● Graphics

4 Discussion
 ● Originality
 ● Species treatment
 ● Applications
 ● twoe web-site
twoe web-site

http://twoe.sourceforge.net

- On SourceForge
- source code
- manual
- slides

twoe version 1.0
Published on 16 juillet 2011 in Mon dossier: Closed

twoe (2e) is a software which aims first, at estimating the demographic parameters of tropical tree species from permanent forest plot data (through an R package) and second, at simulating forest dynamics (through a Capsis module). Authors: Ghislain Vieilledent, François de Coligny.

R package

- Package source: twoe_1.0.tar.gz
- Windows binary (R 2.15.2): twoe_1.0.zip
- Reference manual: twoe.pdf
- Slides: slides_twoe.pdf
Thank you for attention...